
1

caArray
Cancer Array Informatics

Software Design Overview

NCI Center for Bioinformatics

April 14, 2004

2

Agenda

Introductions / project goals
Current project status
caBIG compliance
Architecture & design overview
Proof of concept
Q&A

3

caArray Project Goals

Allow researchers to manage and document
their experiment data with full MIAME 1.1
compliant annotations
Support import and export of MAGE-ML,
allows data exchange via an internationally
standardized format.
Support submission and retrieval of
Affymetrix and GenePix native format files
Consistent with caBIG principles, provides
open-source application to NCI-designated
cancer centers and other affiliated
organizations

4

Key Features (Phase I)

MIAME 1.1 compliant
MAGE-ML import and export
Submission and retrieval of native
Affymetrix and GenePix files
Use of MGED Ontology and controlled
vocabularies
N-tier architecture
User-access management via the NCICB
common security model

5

Key Features (Phase II)

XpressionWay, a pathway visualization tool
UCSF SPOT data
SAGE data
User interface for User Management

6

Current Status

Completed Analysis
Use case diagrams
Wire frames

Completed Design
Sequence diagrams
Class diagrams
Reference
implementation /
proof of concept of protocol management

Completed MAGE-stk persistence

Manage Users and Data AccessUserManager

Use Controlled Vocabularies

Repository
Curator

Manage Experiments

<<include>>
Manage BioMaterials

<<include>>

ExperimentManag
er

Manage Array Designs

<<include>>

Manage Protocols, Software and
Hardware

ConfigurationMan
ager <<include>>

7

caBIG Compliance
General Principles

Open access, open source
Both raw and processed data will
be made available. Patient
privacy and other concerns will
be respected and addressed, but
will not in and of themselves
preclude sharing of appropriate
data.
Software source code, use cases,
designs, models, test plans, and
other artifacts of the
development process will be
shared.
Where possible, open source
enabling technologies will be
selected

Good will among participants
caBIG Workspaces are
collaborative teams, and
participants are expected act
accordingly.
Debate/discussion is encouraged,
but professional demeanor and
tone should be the norm.

caArray allows submission and
retrieval of all public data. The
protection group/element concept in
caArray allows researchers to preclude
sharing of sensitive data.

All caArray use cases, design
documents, test cases, source code
and all other artifacts are being
developed under an open source
license. See caBIO license.
caArray utilizes only open source
technologies such as MAGE-stk, JBoss,
Xerces, Struts, Ant, OJB, etc

caArray is being built in an
collaborative environment to address
researchers’ needs

8

caBIG Compliance
Architectural Principles

Data and analytic services will be
made available to caBIG using uniform
application programming interfaces
(APIs) and appropriate standard
message formats.
The APIs and messages will be derived
from common information models for
biomedical data entities or objects,
and will be accessible through
interfaces that reflect these models.

APIs and messages will support the
delivery of data and also of
accompanying metadata, in order to
ensure that aggregated data sets are
comparable.

caArray will allow programmatic
interface to its data via the EJB
Managers, MAGE-OM API, and the
MAGE-ML document.

caArray is built upon MAGE-OM object
model, MIAME and MGED-Ontology
standards.

APIs and messages will support the
delivery of data and also of
accompanying metadata, in order to
ensure that aggregated data sets are
comparable.
caArray supports and extends MAGE-
OM which allows for the deep
annotation of microarray experiments
according to MIAME.

9

caBIG Compliance
Architectural Principles, cont.

Applications will be engineered to use
the common caBIG APIs.

Standards for data exchange formats
will be used.

All systems, applications and selected
standards will be documented.

caArray is built to utilize and
complement the caCORE
infrastructure.

caArray is built upon the MIAME,
MAGE-ML and MGED-Ontology
standards.

caArray will include JavaDocs, a User
Guide, and online Help.

10

caBIG Compliance
Data Standards

Data will be described by metadata
elements that conform to an accepted
standard such as ISO/IEC 11179.
Metadata will be leveraged to achieve
data interoperability and
comparability.

Data and metadata will be constructed
and drawn from appropriate
vocabulary and ontology standards.

caBIG will consume of appropriate
public, open access standards where
they are available.

caArray metadata will reside in caDSR,
a ISO/IEC 11179 derived repository.
caArray is built to support MAGE OM
(an OMG specification), as describe in
Uniform Modeling Language (UML).

caArray utilizes the MGED Ontology, a
set of open and standard controlled
vocabularies and ontologies built to
support annotation of microarray data.

caArray is built upon MAGE-OM object
model, MIAME 1.1, and MGED-
Ontology standards. (See next slide)

11

Compliance with International
Standardization Efforts

MIAME
Minimum Information About a Microarray Experiment
1.1 Draft 6 (April 1, 2002)
http://www.mged.org/Workgroups/MIAME/miame_1.1.html

MAGE-ML
MicroArray and GeneExpression Object Model and Markup
Language
1.1 (October 2003)
http://www.omg.org/docs/formal/03-10-01.pdf

MGED Ontology
Microarray Gene Expression Data Ontology
1.1.8 (April 2004)
http://mged.sourceforge.net/ontologies/MGEDontology.php

12

Issues Impacting
caArray Architecture

MAGE-ML Export/Import
Utilizes MAGE-stk 1.1 (evolving)

User Access
Utilizes the Common NCICB Security Schema
Common NCICB authentication and authorization security module is in
progress

Scalable Robust Distributed Architecture
caArray is utilizing a both a J2EE web container and J2EE EJB container
(JBoss implementation) for submission
Java Messaging Service (JMS) for asynchronous processing of large
uploaded documents.
MAGE-OM API (RMI based) for retrieval

Database Independence
caArray uses Apache's ObjectRelationalBridge (OJB) as the Object
Relational Mapping tool that allows transparent persistence for plain old
Java Objects (POJO's) in the MAGE-stk toolkit against relational
databases.
OJB is also the current standard for caBIO allowing code reuse across
projects.

13

Data Access

MAGE-OM API
EJB API via data transfer objects (DTO)
MAGE-ML export
Native Affymetrix and GenePix file formats

14

caArray Architecture
TOMCAT WEB
CONTAINER

MAGE-ML and
AFFY / GENEPIX
NATIVE FILES

BROWSER

FTP APPLET
NATIVE DATA

FILE

MAGE-ML DOC

FTP STAGING AREA

DATA
TRANSFER

OBJECT
(DTO)

SERVLET

JSP S
TR

U
TS

EJB CONTAINER

VOCAB
MGR EJB

SECURITY
MGR EJB

VOCAB
INTERFACE

SECURITY
OBJECTS

OBJECT
RELATIONAL

BRIDGE
(OJB)

caARRAY
DB

SECURITY
DB

NETCDF API

MAGE-ML
IMPORTER MDB

FILE UPLOADER
MDB

caCORE

caBIO
caDSR

EVS

MAGE-OM API
JAR

MAGE-OM
OBJECTS

MAGE-OM
RMI MGR

NETCDF API

MAGE-OM
PERSISTENCE

PROTOCOL
MGR EJB

EXPERIMENT
MGR EJB

OTHER
MGR EJB

MAGE
MANAGER

M
A

G
E

-S
TK

(M
A

G
E

 O
B

JE
C

TS
)

FILE SHARE

15

caArray Technologies

PRESENTATION LAYER

BUSINESS LAYER

DATA ACCESS LAYER

TOMCAT J2EE
WEB CONTAINER

JBOSS J2EE CONTAINER

APACHE’S OJB
PERSISTENCE BROKER

JSP, SERVLETS,
CUSTOM TAGS, STRUTS

EJB STATELESS SESSION
BEANS, BUSINESS OBJECTS,
MAGE-STK, MESSAGE DRIVEN
BEANS, caBIO API

MAGE-OM, SECURITY,
DATA ACCESS OBJECTS

LOGICAL LAYER PHYSICAL LAYER caARRAY
TECHNOLOGIES

CLIENT LAYER WEB BROWSER
HTML, JAVASCRIPT,
FILE UPLOAD APPLET

caARRAY
SCHEMA

SECURITY
SCHEMA LDAP

HTTP - INTERNET

16

caArray at Cancer Centers

NCICB

NCI-designated Cancer Centers

caBIO

caDSR / EVS

Security

caBIO

caDSR / EVS

NCICB Security

caWorkbench

caWorkbench

caArray
schema

caArray
schema

MAGE-OM API

MAGE-OM API

MAGE-ML GRID
(future)

caARRAY EJB

caARRAY EJB

JAVA
APP

17

User Interface

Conforms to NCICB UI Standards

18

Design Challenges and Solutions

Presentation
GUI framework

Model View Controller 2

Flexible web page layout
Composite View

19

Design Challenges and Solutions

Business
Data encapsulation

Transfer Objects
Common object to locate/lookup services

Service Locator
Abstract and decouple business services

Business Delegate
Encapsulate the DTO to MAGE-OM logic

Transfer Object Assembler
Uniform coarse-grained service access layer to clients

Session Facade
Access to vocab/metadata services

Configurable Interface Pattern
Process asynchronous MAGE-ML import & file uploads

Service Activator

20

Design Challenges and Solutions

Persistence
Efficient representation of large data sets

NetCDF Data Capture Strategy

Decouple object and data source layer
Abstraction and Database Independence

Efficient materialization of objects
Lazy Materialization Pattern

21

Model View Controller 2

caArray’s Presentation Layer utilizes
the Model View Controller 2 (MVC2)
design pattern

Separation of the application object
(model) from the way it is represented
to the user (view) from the way in
which the user controls it (controller).
Implemented via Apache Struts
Framework
http://jakarta.apache.org/struts/

Benefit: Separates the UI from the
underlying structure

22

Composite View

The Composite design pattern lets you treat primitive
and composite objects exactly the same.
The Apache Struts framework includes a JSP tag library,
known as Tiles, that lets you compose a Webpage from
multiple JSPs.
Benefit: Tiles allows us to
build a flexible and
reusable presentation
layer.

23

Transfer Objects Pattern
Allows application client to exchange data with EJBs
Client sets all user input in transfer object, which is sent
to the EJB
EJB processes business logic, sets all resulting data in
the transfer object, and sends back to client
Benefits

All data needed by client
and server-side processes
are encapsulated in one
object and sent/retrieved
in one method call,
lessening network impact
Strongly-typed data
transfer objects simplify
server-side interface,
providing easier code
maintenance

24

Transfer Objects Pattern
Demonstrates application
client setting user-
entered values in the
ProtocolData Transfer
Object
Client application then
invokes EJB method to
add protocol, sending the
Transfer Object by value
EJB method then
retrieves all user-entered
values from the Transfer
Object, and begins
business processing

 : Appl ication :
ProtocolManagerEJB

 : ProtocolData

 : Prot ocolDesc

7: addProtoc ol(data)

11: get Descript ion()

8: getDesc()

9: getName()

1: ProtocolData()

2: ProtocolDesc()

3: setName(name)

4: setType(type)

5: setDescription(description)

6: setURI(uri)

10: getType()

12: getURI()

25

Service Locator Pattern

caArray uses a common object to locate/lookup EJB
home objects and JMS service components
(Connection Factory, Session, Topic, etc.)
Benefits

A single point of control
of the complexity of the
lookup operation
Ease of code maintenance
for the creation of vendor-
dependent initial context
Increased application
performance with cached
EJB home objects

26

Service Locator Pattern

27

Business Delegate Pattern

caArray uses a wrapper class for each of the
specific EJB Managers such as ExperimentManager,
ProtocolManager, etc. as Business Delegates to
reduce coupling between presentation-tier clients
and business services.
Benefit

Hides the underlying
implementation details
of the business
service, such as
creation of EJB objects
and access details of
business operations.

28

Business Delegate Pattern

29

MAGEManager
Transfer Object Assembler Pattern

caArray uses the MageManager as a Transfer Object Assembler to
build the required Mage model or submodel.
The MageManager acts as the Transfer Object Assembler. It uses
Transfer Objects to retrieve data from various MAGE-stk business
objects that define the model or part of the model.
The mapping between the DTOs and MAGE-stk is generated using
xdoclet and persists in an XML document.
Benefits

Encapsulates the MAGE-OM
and hides from Business Logic.
Shields Business logic from
complexity of assembling
Transfer objects.
Use of Generic method
reduces the code-base and
enhances maintenance.

ExperimentMgrEJB

ExperimentData

0..n0..n
contains

ExperimentMAGEMgr

builds

BusinessObject
1..n

uses

MAGEExperimentExperimentMgrDB

ExperimentMgrEJB

ExperimentData

0..n0..n
contains

ExperimentMAGEMgr

builds

BusinessObject
1..n

uses

MAGEExperimentExperimentMgrDB

30

MAGEManager
Transfer Object Assembler Pattern

: Application ExperimentEJB MAGEManager ExperimentDB Security MAGEExperiment Mapper

13: ExperimentData13: ExperimentData

14: GeneralException

9: AccessDeniedException9: AccessDeniedException

1: getExperimentData(long)1: getExperimentData(long)

2: getExperiment(long)

3: getExperiment(long)3: getExperiment(long)3: getExperiment(long)

4: ObjectNotFoundException
5: ExperimentNotFoundException5: ExperimentNotFoundException

6: getSecuredElementID()6: getSecuredElementID()

7: canCurrentUserAccessElement(SessionContext, long, String[])

8: accessDeniedException

10: init()

11: mapTo()
12: return ExperimentData

31

Session Façade Pattern
caArray uses EJB Mangers such ProtocolManager,
ExperimentManager etc as a façade to hide the
complexity of interactions between the business
objects participating in a workflow.
The Session Façade manages the business objects,
and provides a uniform coarse-grained service
access layer to clients.
Benefits

Reduces coupling between client
and server side code increasing
manageability.
Provides common API interface
access for multiple client
applications.
Provides clean coarse grained
access interface.
Allows for distributed deployment
of client and server distributions.

Client

1..*

accesses

VocabManager SecurityManager MageManager

ExperimentManagerEJB BusinessObject

ExperimentDB

uses

ClientClient

1..*

accesses

VocabManagerVocabManager SecurityManagerSecurityManager MageManagerMageManager

ExperimentManagerEJBExperimentManagerEJB BusinessObjectBusinessObject

ExperimentDBExperimentDB

uses

32

Session Façade Pattern

: Application ExperimentManagerEJB SecurityManagerBean ExperimentManagerDBBasicExperimentData ExperimentMAGEMgr

1: addBasicExperimentData()

2: createSecuredElement()

3: GeneralException

2: createSecuredElement()

3: GeneralException

4: CreateExperimentException
5: getElementID

6: setSecureElementID(long)6: setSecureElementID(long)

7: addExperiment(ExperimentDATA)

Mapper

8: init()

9: mapTo()

8: init()

9: mapTo()

12: persistToDatabase

13: DatabasePersistenceException

15: success

16: success

15: success

16: success

14: CreateExperimentException14: CreateExperimentException

11: addExperiment(ExperimentData)11: addExperiment(ExperimentData)

33

Vocab/MetadataManager
Configurable Interface Pattern

The VocabManager retrieves controlled
vocabularies and metadata via an interface
pattern.
The implementations associated with this
interface are configurable. This allows us to
plug caArray into either the caCORE API, or a
different metadata repository, or an XML
metadata descriptor file.
Via this interface, the VocabManager will allow
the caArray application to perform attribute
type checking, validation and population of
enumerated lists and other controlled
vocabularies.

34

MAGE-ML Export/Import and File Upload
Service Activator Pattern

Use a Service Activator to receive asynchronous client requests for
MAGE-ML import and File Uploads.
On receiving a message, the Service Activator locates and schedules
the MAGEParser module to parse MAGE-ML documents and invoke the
appropriate business service component such as ExperimentManager
or ArrayDesignManager to persist the resultant MAGE-stk objects
asynchronously.
Similarly after the data files
are uploaded by the
FileUploader module,
MAGEParser is scheduled
to parse and persist the
data asynchronously.
Benefit

Asynchronous processing
of time & memory intensive
operations

35

MAGE-ML Export/Import and File Upload
Service Activator Pattern

36

NetCDF Data Capture Strategy

Binary representation of numerical data.
Easily manipulated by R and Java.
Fast and efficient direct access to data
matrices.
Convertible to XML or tab-delimitated forms
Java API can be written for transparent
access.
Self describing format.

37

Persistence Abstraction
caArray uses Apache's ObjectRelationalBridge (OJB) as the
Object Relational Mapping tool that allows transparent
persistence for plain old Java Objects (POJO's) in the MAGE-stk
toolkit against relational databases.
caArray utilizes OJB's persistence facility to manage the
connection to the data source, store, and restore MAGE-stk
objects.

The mapping of MAGE-stk objects and their relationships to the
database entities is described in OJB repository files to allow OJB
to know how to persist or restore them.

OJB is also the current standard for caBIO allowing code reuse
across projects.
Benefit:

Decoupling between Object and Data source layers

38

Lazy Materialization Pattern
Lazy materialization refers to only loading data collections when they are
actually required. In caArray "lazy loading" aka "lazy materialization" is a
capability that is implemented via OJB collection proxies.
Lazy materialization is implemented using a Proxy to make the calls to
manipulate the collection. This can help you in reducing unnecessary db
lookups, and object materialization. Example:

Say you load a ArrayDesign object from the db which contains a collection of
15000 Feature objects.

Without proxies all 15000 Feature objects are immediately loaded from the db,
even if you are not interested in them but just want to lookup the description-
attribute of the ArrayDesign object.

With a proxied class, the collection is implemented via a proxy, that implements
the same interface as the "real collection" but only materializes the objects in the
collection when necessary. Once you access such a proxied collection it loads its
collection objects by OJB and executes the method call.

Since the actual Java class uses an interface for the collection, the OJB
proxy can be utilized without changing, or creating dependencies within, the
classes code.
Benefits

Allows materialization of objects efficiently in terms of both time and memory
usage.

39

User Access Roles
User Manager

A user who is responsible for creating data sharing consortiums, users, organizations and people.

Configuration Manager
A user who is responsible for managing the protocols, hardware, software and array designs.

Ontology Manager
A user who is responsible for managing dynamic vocabularies.

Experiment Manager
A user who is responsible for annotating biomaterials and maintaining the data associated with
experiments.

Curator
A user who is responsible for the
integrity of the data for a particular
group or a set of groups.

Repository Curator
A user who is responsible for the
integrity of the data stored in the
repository.

Data Owner
Any user that is currently listed as
the owner of any protected data
element in the system.

User
Any individual who will use the
system to submit data or search
through and utilize existing data.

40

Data Models

caArray data model
The data model was derived by annotating the
MAGE-OM API with Xdoclet tags.
The Java files were processed by an Xdoclet
module (Apache’s Torque).
The process generated the OJB repository.xml
file and the SQL DDL schema.
The schema was then optimized for
performance.
Benefit: Using a code generator, the schema can
be regenerated when the MAGE-OM changes.

Security data model
Utilizing NCICB common security data model.

41

Proof of Concept

Developed Protocol Management reference
implementation (proof of concept) that
implemented end-to-end functionality for
protocol management screens.
Using the proof of concept, one can
perform the following:

Search, Add, Update, and Delete Protocols
Add Hardware/Software/Parameter to Protocol

42

NCICB caArray
Cancer Array Informatics

Software Design Follow-Up

May 17, 2004

43

caArray Design Follow-Up

Access to caArray via a Federated Architecture
Timelines for incorporation of reporting/analysis modules in
caArray
Timelines for incorporation of solution for issues raised by
use of MGED Ontology within a MAGE-ML document.
Timelines for use of the caDSR and creation of CDEs in
caArray
Additional functionality need in MAGE-OM API

44

caArray Interfaces

caArray provides access to its data via the
following interfaces:

Programmatic
MAGE-OM API
caArrayEJB API via data transfer objects (DTO)

caArray Submission Portal
Document

MAGE-ML import/export
Native Affymetrix and GenePix file formats

45

Potential caArray Configuration

NCICB

NCI-designated Cancer Centers

caBIO

caDSR / EVS

Security

caBIO

caDSR / EVS

NCICB Security

caWorkbench

caWorkbench

caArray
schema

caArray
schema

MAGE-OM API

MAGE-OM API

MAGE-ML GRID
(future)

caARRAY EJB

caARRAY EJB

JAVA
APP

46

caArray Interfaces: Mage-OM API(cont’d)

MAGE-OM API :Provides fine grain search and
retrieval of all caArray data via a caBIO-like RMI
based API.

For Phase I:
The MAGE-OM API will be modified to map the MAGE
objects to the new caArray database schema.
RMI Security module will need to incorporated and
tested for user/group level data access.
NetCDF API logic will need to be incorporated for faster
retrieval of data

47

caArray Interfaces: Portal (cont’d)

caArray Submission Portal: Via a user friendly
GUI, caArray allows the users to submit, annotate
and retrieve experiments.

For Phase I:
MIAME 1.1 compliance
Affymetrics & GenePix native file capabilities
MGED Ontology for annotation
MAGE-ML import/export

48

caArray Interfaces: caArrayEJB API (cont’d)

caArrayEJB API: Provides transaction control,
asynchronous processes,service location, common security
and distributed capabilities for submission and retrieval of
Microarray Experiments, MAGE-MLdocuments and its
associated data files.

For Phase I:
The caArrayEJB API will provide the above functionality
via the caArray presentation layer.
The caArrayEJB source code will be packaged and
documented for installation at other cancer centers.
The caArray team will only document how the caArrayAPI
might be used for federated submission of micro array
data.

49

caArray Interfaces: Federated (cont’d)

Future Phases:
The actual proof of concept for federated
submission of micro array data will be addressed
during a future phase.

50

caArray Interfaces: Documents (cont’d)

For MAGE-ML Export/Import:
caArray is planning to support both DataInternal and
DataExternal .
The actual format of the DataExternal/ DataInternal is
specified within the XML, such as tab delimited and
others.
For Phase I, the Mage-ML import/export utility will only
support the tab delimited format files such as output from
Excel.

Submission and retrieval of native Affymetrix and
GenePix files

51

Timelines for incorporation of
reporting/analysis modules in caArray

For Phase I:
caWorkbench & webCGH will be modified and
tested with the new MAGE-OM jar file.

Future Phases (Iterative Development):
Following Initial release, XpressionWay and
other reporting/analysis modules will be
incorporated into caArray in iterative release
cycles.

52

Timelines for incorporation of solution for
issues raised by use of MGED Ontology

For phase I:
Java Binding solution will be incorporated
for MGED Ontologies associated with
BioMaterial object.
MAGE-OM API will also need to be
modified to incorporate this feature.

Future Phase:
To handle all MGED Ontologies, A true
ontology to Java class code generator
will need to be developed.

53

Timelines for use of caDSR and
creation of CDEs in caArray

For phase I:
Configurable Interface Pattern used to abstract
the source of controlled vocabularies and
metadata behind the caArrayEJB API.

On going:
Arrange to get the MAGE-OM API loaded into
caDSR via UML loader
Looking into creation of CDEs for caArray GUI

Future phase:
Addition of caArrayEJB APIs Data Transfer
Objects (DTOs) into caDSR

54

Additional functionality need in
MAGE-OM API

For Phase I:
RMI Security module will need to incorporated
and tested for user/group level data access.
NetCDF API logic will need to be incorporated
for faster retrieval of data
Java Binding solution for MGED Ontologies
associated with BioMaterial object will be
incorporated.

55

Wrap Up

Questions?
http://caarray.nci.nih.gov

